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Eigenmodes and growth rates of relativistic current filamentation instability in a collisional plasma
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I theoretically found eigenmodes and growth rates of relativistic current filamentation instability in colli-
sional regimes, deriving a generalized dispersion relation from self-consistent beam-Maxwell equations. For
symmetrically counterstreaming, fully relativistic electron currents, the collisional coupling between electrons
and ions creates the unstable modes of growing oscillation and wave, which stand out for long-wavelength
perturbations. In the stronger collisional regime, the growing oscillatory mode tends to be dominant for all
wavelengths. In the collisionless limit, those modes vanish, while maintaining another purely growing mode
that exactly coincides with a standard relativistic Weibel mode. It is also shown that the effects of electron-
electron collisions and thermal spread lower the growth rate of the relativistic Weibel instability. The present
mechanisms of filamentation dynamics are essential for transport of homogeneous electron beam produced by
the interaction of high power laser pulses with plasma.
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I. INTRODUCTION

Relativistic laser-plasma interactions have been a top
issue for the past decade@1#, in the context of ignitor physics
of inertial confinement fusion, aiming at additional fast he
ing and subsequent ignition of highly compressed targets
means of an external intense laser pulse@2#. The laser pulse
drives relativistic currents, compensating return currents,
creates a pattern of counterpropagating currents which
subject to current filamentation instabilities~CFI! including
the Weibel mode@3#. In the theoretical arena, numerous ve
sions of analytical and numerical methods have been de
oped in the past, to explore this type of instabilities@4–17#.
In general, the physical mechanism of the electromagn
CFI is explained as follows: When the compensation of
counterpropagating electron currents is disturbed in
transverse direction, magnetic repulsion between the
currents reinforces the initial disturbance. As a conseque
a larger and larger magnetic field is produced as time
creases, degrading the transport properties. Many eff
have been devoted to this crucial problem, both related
laboratory electron beams@18–20# as well as to astrophysic
@21–23#. Concerning laser interaction with plasmas, for t
low ~nonrelativistic! intensity regimes the inverse brem
strahlung absorption is known to predominate around
cutoff region, where the Weibel-type instability associat
with temperature anisotropy can take place@24,25#. In the
ablative plasmas, the collisional and related nonlocal effe
were investigated@26#.

The original motivation for this work was triggered b
more recent publications that have been quantitativ
treated with the counterstreaming relativistic CFI in the c
lisionless limit @27–29#. A series of works could be linked
with the ignitor physics by irradiating a relativistic las
pulse: Fast ignition of the compressed fuel requires at le
10–100 kJ of external energy to be deposited within;10 ps
into the precompressed core@30#. If carried by 1210 MeV
electrons, it implies a current of 0.1–1 GA which exceeds
transport limit of about 100 kA@31#, by more than a factor
;103. The essential feature is the breakup of the relativis
electron beam into many filaments when propagating
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dense plasma@32,33#. The physics underlying this phenom
enon is just the CFI as mentioned above. This type of ins
bility leads to nonlinear filamentation and coalescence of
relativistic electron beam@7,34–38# and the formation of
strong magnetic fields@35–37,39,40#. In the astronomical
point of view, one often encounters such morphology in
variety of celestial objects, particularly, in the astrophysi
jets @41#. State-of-the-art observations by utilizing very lon
baseline interferometry have revealed the filamentary st
ture of the jets@42#, involving transverse magnetic field
@43#. More recently, large-scale toroidal magnetic fields ha
been discovered in the Galactic Center@44#, accompanied
with splendid filamentary radio arcs@45,46#.

Regarding the ignitor physics of laboratory plasmas,
effects of collisions and beam thermal spread play a sign
cant role in the CFI caused by the ultrahigh relativistic c
rents through ablative coronal plasma@37#, whose density
rises fromnc'1021 cm23 ~cutoff density! to ;1026 cm23 ~a
thousand times solid density!, over a radial distance o
;102 mm @47#. The role of collisions in a laser-produce
plasma has been discussed in the early literature by M
@48#, though the description was restricted to the nonrela
istic fashion. It is important to note that the collision fre
quency invokes additional parameter disturbing the unive
density scaling, in terms of the time scale of a plasma os
lation periodvpe

21 and the spatioscale of a skin depthc/vpe ,
which is valid only for collisionless regimes. In fully relativ
istic regimes, the collision cross section should be evalua
by using the Mott scattering formula@49#. Presuming a smal
angle scattering and averaging over the angle yield
electron-ion collision frequency that can be defined asnei
5(niYei /c

3)(G/m3), whereni is the number density of ions
Yei54p(Z̄e2/m0)2 ln L, G5(11m2)1/2, m5pe /m0c, and
pe , m0 , Z̄, and lnL are the electron momentum, the electr
rest mass, the averaged charge number, and the Cou
logarithm, respectively@50#, and the electron-electron colli
sion frequency is given asnee5(2/Z̄)nei . Introducing the
current neutral condition ofnb /np.uvp /cu!1, wherenb ,
np , andvp are the beam electron density, the plasma el
tron density, and its velocity, respectively, we find the ra
©2004 The American Physical Society01-1
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of nei /vpe.2p1/2Z̄9/2e3ni
1/2(m0c2)23/2(ni /nb)3ln L for the

plasma return current. When assumingnb;nc'1021 cm23

to be almost constant, the ratio can be estimated as

nei

vpe
;Z̄9/2S ni

1023 cm23D 7/2S ln L

5 D . ~1!

Equation~1! indicates that indeed, collisional effects are im
portant in the supersolid density regions ofni>1023 cm23,
and particularly, for the Lorentz plasma withZ̄@1. In addi-
tion, the beam thermal spread will occur there, since
electrons penetrating through the ablative corona are
pected to be thermalized via the collisional and collisionl
dissipative processes@36#. The thermal effects involved with
the ratio of the transverse temperature to the total energ
beam electron, i.e.,;Tb' /(Gm0c2) with expected values in
the range less than unity@37#, which also disturbs the afore
mentioned scaling.

In this paper, I present fundamental eigenmode proper
and growth rates in the linear stage of the CFI including
effects that violate the universal density scaling. The the
is expanded in fully relativistic regime on the basis of t
self-consistent beam-Maxwell equations. To the best of
knowledge, a comprehensive treatment of electron-elec
and electron-ion collisional effects on relativistic counte
streaming electron currents with thermal spread has not b
carried out, so far. For the symmetrically counterstream
currents, I found that collisional and thermal effects a
likely to lower the growth rate of the relativistic Weibel in
stability. The most significant result is that the finite col
sional coupling between electron and ion creates the grow
oscillatory and the growing wave modes, which stand out
long-wavelength perturbations, and in the moderate to str
collisional regime, even for short-wavelength perturbatio
the growth rate of the oscillatory mode exceeds that of
suppressed Weibel instability. In this aspect, the present w
goes beyond the framework of the well-established theor
electromagnetic instabilities. The asymmetric configurat
effects of the counterstreaming currents are also investig
by using a slow return current approximation. Furthermor
argue that the collisional coupling between electron and e
tron creates a growing wave mode, but its growth rate
lower than that of the suppressed Weibel instability. It is a
shown that thermal effects participate in lowering the grow
rate of the Weibel instability. Although, in the case that
cludes thermal corrections, the present calculation is v
for the smaller wave numberk as shown later, the most in
teresting rangek;vpe /c can be fairly covered.

In order to spell out these subjects, the present pape
organized as follows: In Sec. II, the linear theoretical ana
sis of the relativistic CFI is expanded systematically. T
basic equations introduced in Sec. II A are linearized so a
obtain a dispersion relation of the CFI along the man
outlined in the Appendix. The generic dispersion relation
presented in Sec. II B, and its approximate expressions
derived in Sec. II C. In Sec. III, for an application, the new
derived equations are solved for typical parameters of co
terstreaming relativistic currents, and the properties of co
01640
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plex eigenmodes are investigated for the cases including
effects of electron-electron collision~Sec. III A!, electron-
ion collision ~Sec. III B!, thermal corrections~Sec. III C!,
and for the special case without collisional and thermal
fects~Sec. III D!, as well as, for the case with an asymmet
cal configuration of counterstreaming currents~Sec. III E!,
closely relevant to ignitor physics. As a matter of conv
nience, formulas of the growth rates are explicitly writte
down for some interesting cases. Finally, Sec. IV is devo
to concluding remarks.

II. GENERALIZED DISPERSION RELATION
OF THE RELATIVISTIC CURRENT

FILAMENTATION INSTABILITY

A. Basic equations and assumptions

Begin with the nonlinear beam-Maxwell equations th
include both friction and pressure terms. Assuming the io
to be at rest and to provide a uniform charge-neutraliz
background, we study the relativistic dynamics of two u
form, counterstreaming electron currents by employing
following set of equations in the dimensionless form,

]na

]t
2“• ja50, ~2!

]pa

]t
1~va•“pa!52~E1va3B!2neipa2nee~pa2pā!

2
“Pa

n0,a
, ~3!

“3E52
]B

]t
, ~4!

“3B5
]E

]t
1(

a
ja , ~5!

“•E512(
a

na , ~6!

where va5pa /A11pa
2, ja52nava , and the subscripta

51, 2 labels the two electron components andā labels the
countercomponent ofa, viz., ā52, 1 for a51, 2, respec-
tively. In particular,nei andnee describe the electron-ion an
electron-electron momentum exchanges, and the other n
tions are standard. For normalization, I have used the
tially uniform densityn0, the speed of lightc, and the elec-
tron plasma frequencyvpe5A4pn0e2/m0. Note that the
Poisson Eq.~6! is equivalent to a combination of the cont
nuity Eq. ~2! and the Ampere-Maxwell Eq.~5!.

According to a procedure similar to that developed
Califanoet al. @27#, I investigate the behavior of small am
plitude perturbations by linearizing Eqs.~2!–~5!. I impose
current neutrality of(an0,av0,a50, wherev0,a5v0,ax̂ are the
initial velocities inx direction. Under the current neutrality
there exists no magnetic field initially. The CFI is studied
the x-y plane. In order to derive the dispersion relation,
1-2
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perturbed quantities are assumed to be in the form
F(y,t)5F exp@i(kyy2vt)#. As a result, a magnetic fieldB
5(0,0,Bz) and a corresponding electric fieldE5(Ex ,Ey,0)
are generated. The purely transverse mode is investigate
detail throughout this paper, i.e.,kx50 and ky5kÞ0,
whereas the longitudinal mode such as two-stream instab
with kxÞ0 andky50 is not taken into account at the mo
ment. The pressure of each electron components is conne
with its density by a polytropic relation, which depends
the characteristic frequencyv and wave numberk of the
mode being considered. As it is well known, in the case t
the ratio of v/k is much larger than the electron therm
speed, the adiabatic exponent ofge53 is adequate for the
polytrope@48,51#. Henceforth, I assumedPa /na

35const, so
that “Pa53T0,a“na . Then, we get a closed form of th
linearized Eqs.~2!–~5!. The background ions are supposed
be fixed on the short time scale of;vpe

21 . Along these as-
sumptions, in the nonrelativistic limit Eqs.~2!–~6! involve
the resistive transverse wave modes and longitudinal w
mode with thermal correction which were discussed in R
@48#.

B. The dispersion relation including collisional effects
and thermal corrections

The extended dispersion relation of the relativistic C
including collisional and thermal effects is then found se
consistently. In collisionless cases the dispersion relation
can be expressed as functions ofv2 and (k/v)2 does not
include the imaginary uniti 5A21 explicitly and contains
the purely real and purely imaginary solutions ofv(k) @27#.
The purely real solutions consist of the pairs of the posit
and negative solutions, corresponding to purely oscillat
and/or purely oscillatory wave modes, while the pure
imaginary solutions are concomitant with the complex co
jugate solutions, to yield purely growing and purely decay
~damped! modes.

In the collisional case considered here, the dispersion
lation includes the imaginary unit explicitly. Hence, the s
lutions ofv(k) may depart from the real and imaginary ax
in the complex plane. In this sense, hereafter we refer to s
solutions, i.e., complex eigenmodes with real and imagin
part, asdephasing modes. Below, I explicitly write down the
generalized dispersion relation containing the dephas
modes. After some manipulations outlined in the Append
the dispersion relation can be obtained in the complex fo
of Re@v,(k/v)2#1 i Im@v,(k/v)2#50, where

Re@v,~k/v!2#

5@~11tVk
22!2~V11

221V11,T
22 Vk

22!#

3@~11tVk
22!~12Vk

22!2~V21
221V21,T

22 Vk
22!

2~V31
221V31,T

22 Vk
22!Vk

22#2~V12
221V12,T

22 Vk
22!

3@~V22
221V22,T

22 Vk
22!1~V32

221V32,T
22 Vk

22!Vk
22#

2@~V41
221V41,T

22 Vk
22!~V43

221V43,T
22 Vk

22!

2~V42
221V42,T

22 Vk
22!~V44

221V44,T
22 Vk

22!#Vk
22 , ~7a!
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Im@v,~k/v!2#

52~V12
221V12,T

22 Vk
22!@~11tVk

22!~12Vk
22!

2~V21
221V21,T

22 Vk
22!2~V31

221V31,T
22 Vk

22!Vk
22#

2@~11tVk
22!2~V11

221V11,T
22 Vk

22!#

3@~V22
221V22,T

22 Vk
22!1~V32

221V32,T
22 Vk

22!Vk
22#

2@~V41
221V41,T

22 Vk
22!~V44

221V44,T
22 Vk

22!

1~V42
221V42,T

22 Vk
22!~V43

221V43,T
22 Vk

22!#Vk
22 . ~7b!

Here,t is defined in Eq.~10b! later,Vk
225(k/v)2, and fur-

thermore,V i j
22 andV i j ,T

22 are defined by

V11
225(

a

n0,a

G0,av2 f1 , V11,T
22 5(

a

n0,a

G0,av2 fT,ā ,

V12
225(

a

n0,a

G0,av2 c1 , V12,T
22 5(

a

n0,a

G0,av2 cT,ā ; ~8a!

V21
225(

a

n0,a

G0,a
3 v2 f2 , V21,T

22 5(
a

n0,a

G0,a
3 v2 fT ,

V22
225(

a

n0,a

G0,a
3 v2 c2 , V22,T

22 5(
a

n0,a

G0,a
3 v2 cT ; ~8b!

V31
225(

a

n0,av0,a
2

G0,av2 f ā,a , V31,T
22 5(

a

n0,av0,a
2

G0,av2 fT,ā,a ,

V32
225(

a

n0,av0,a
2

G0,av2 c ā,a , V32,T
22 5(

a

n0,av0,a
2

G0,av2 cT,ā,a ;

~8c!

V41
225(

a

n0,av0,a

G0,av2 f1 , V41,T
22 5(

a

n0,av0,a

G0,av2 fT,ā ,

V42
225(

a

n0,av0,a

G0,av2 c1 , V42,T
22 5(

a

n0,av0,a

G0,av2 cT,ā ,

V43
225(

a

n0,av0,a

G0,av2 f ā,a , V43,T
22 5(

a

n0,av0,a

G0,av2 fT,ā,a ,

V44
225(

a

n0,av0,a

G0,av2 c ā,a , V44,T
22 5(

a

n0,av0,a

G0,av2 cT,ā,a ,

~8d!

whereG0,a5(12v0,a
2 )21/2 is the Lorentz factor, andf andc

stand for the dephasing factors which can be expressed

f15
j112nn1

f
, fT,ā52

j1T̃0,ā1~11nn1!T

f
,

c15
2n2j1n1

c
, cT,ā52

nTā2n1T

c
,

1-3
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f25
1

z2
, fT52

2j2T̃

z2f
,

c252 ñeif2 , cT52 ñeifT ,

f ā,a5
j112n~n1y āañee!

f
,

fT,ā,a52
j1T̃0,ā1@11n~n1y āañee!#T

f
,

c ā,a5
2n2j1~n1y āañee!

c
,

cT,ā,a52
nTā2~n1y āañee!T

c
,

f52c5j1
214n2, ~9!

and the abbreviations are

n5 ñee1 ñei ,

n15n1 ñee,

z1511 ñee
2 , z2511 ñei

2 ,

j15z12n2, j25z11n2; ~10a!

t5z2fT , T5(
a

T̃0,a , Tā53T̃0,ā1T̃0,a ; ~10b!

y āa5
v0,ā

v0,a
, ~10c!

and ñee5nee/v, ñei5nei /v, and T̃0,a53T0,a /G0,a . In col-
lisionless limits, it follows that in Eq.~10a! n, n1→0, and
z1 , z2 , j1 , j2→1; for infinitesimal thermal spread, in Eq
~10b! t, T, Tā→0; and for symmetrically counterstreamin
currents ofv0,152v0,2, in Eq. ~10c! y āa521. It is noted
that the second order terms for thermal correction of the fo
of ;(T̃0,aVk

22)2 have been neglected, as explained in

Appendix. The corresponding conditionT̃0,aVk
22!1 turns

out to be consistent with the results obtained later, as wel
with the aforementioned adiabatic condition ofuk/vuv th,a

!1, wherev th,a'AT0,a is the electron thermal speed. Whe
assuming the normalized frequenciesñee and ñei to be con-
stants, the dispersion Eq.~7! can be expressed a
Re(v2,Vk

22)1 i Im(v2,Vk
22)50, which contains, in gen

eral, ten complex solutions ofv(k), consisting of five pairs
of positive and negative solutions. In a special case, t
may include purely real and/or purely imaginary solution

C. Approximate dispersions for specific cases

In this section, I investigate some specific cases conta
in the general result: first forT̃0,a50 with ~1! only electron-
01640
e
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y
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electron collisions and~2! only electron-ion collisions, and
then for ~3! T̃0,aÞ0 and~4! T̃0,a50, without collisions.

1. The case including electron-electron collisional effects

For the case ofñeeÞ0, ñei→0, andT̃0,a→0, the dephas-
ing factors of Eq.~9! asymptotically lead to

f1 ,f2→1; f ā,a→
112~11y āa!ñee

2

114ñee
2 ;

fT ,fT,ā ,fT,ā,a→0;

c1 ,c2→0; c ā,a→2
~12y āa!ñee

114ñee
2 ;

cT ,cT,ā ,cT,ā,a→0. ~11!

Therefore, in Eq.~8! we read V12
22 , V22

22 , V42
22 , V i j ,T

22

→0, and Eq.~7! then reduces to

Re~v2,Vk
22!'~12V11

22!@~12V21
22!2~11V31

22!Vk
22#

2V41
22V43

22Vk
22 , ~12a!

Im~v2,Vk
22!'2~12V11

22!V32
22Vk

222V41
22V44

22Vk
22 .
~12b!

Instead of Eq.~8!, I introduce the definitions of

V1
225(

a

n0,a

G0,av2 , V2
225(

a

n0,a

G0,a
3 v2 ,

V4
225(

a

n0,av0,a

G0,av2 ; ~13a!

V38
225(

a

n0,av0,a
2

G0,av82 , V48
225(

a

n0,av0,a

G0,av82 , ~13b!

wherev825v2/(f ā,a1 ic ā,a), which may be rewritten as

v82 5
112i ñee

11 i ~11y āa!ñee
v2. ~14!

The definitions ofV1
22, V2

22, and V4
22 in Eq. ~13a! are

recalled later. It is noted that for a trivial case of copropag
ing currents withv0,15v0,2, i.e.,y āa51, Eq.~14! reduces to
v825v2, indicating that indeed, dephasing effects vani
Making use of Eqs.~13! and ~14!, the approximate disper
sion Eq.~12! can be written in the form of

v2~12V1
22!~12V2

22!

2k2@~12V1
22!~11V38

22!1V4
22V48

22#'0.

~15!
1-4
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Equation~15! contains six solutions ofv. One should note
that the factor of (12V1

22), regardless of the transformatio
of Eq. ~14!, involves a simple eigenmode of the relativist
plasma oscillation. More details are discussed in Sec. III

2. The case including electron-ion collisional effects

For the case ofñee→0, ñeiÞ0, andT̃0,a→0, the dephas-
ing factors of Eq.~9! asymptotically lead to

f1 ,f ā,a→f25
1

z2
; fT ,fT,ā ,fT,ā,a→0;

c1 ,c ā,a→c252
ñei

z2
; cT ,cT,ā ,cT,ā,a→0. ~16!

Therefore, in Eq.~8! V i j ,T
22 →0, and Eq.~7! then reduces to

Re~v2,Vk
22!'~12V11

22!@~12V21
22!2~11V31

22!Vk
22#

2V12
22~V22

221V32
22Vk

22!

2~V41
22V43

222V42
22V44

22!Vk
22 , ~17a!

Im~v2,Vk
22!'2V12

22@~12V21
22!2~11V31

22!Vk
22#

2~12V11
22!~V22

221V32
22Vk

22!

2~V41
22V44

221V42
22V43

22!Vk
22 . ~17b!

Here, we note the relations of

V12
22'2 ñeiV11

22 , V22
22'2 ñeiV21

22 ,

V32
22'2 ñeiV31

22 ,

V42
22'2 ñeiV41

22 , V44
22'2 ñeiV43

22 , V42
22'V44

22 .
~18!

For heuristic ways, I properly choose the dephasing bo
frame defined as

v92 5~11 i ñei!v
2 ~;v2!, k92 5~11 i ñei!k

2, ~;k2!

~19!

Note that in contrast with Eq.~14!, the wave number is also
transformed by the operator in Eq.~19!. Taking account of
the transformation, I give the definitions of

V19
225(

a

n0,a

G0,av92 , V29
225(

a

n0,a

G0,a
3 v92 ,

V39
225(

a

n0,av0,a
2

G0,av92 , V49
225(

a

n0,av0,a

G0,av92 , ~20!

instead of Eq.~8!. By using Eqs.~19! and~20!, the approxi-
mate dispersion Eq.~17! can be expressed as
01640
.

t-

v92~12V19
22!~12V29

22!

2k92@~12V19
22!~11V39

22!1V49
24#'0,

~21!

where V49
245(V49

22)2. Equation ~21! contains six solu-
tions. It is noted that the form of Eq.~21! is quite similar to
that of Eq. ~15!, though there exist some differences
dephasing property between the two. For example, the eig
mode relevant to the plasma oscillation, which is contain
in the factor (12V19

22), is now undergoing the transforma
tion of Eq. ~19!. More on these is given later in Sec. III B
and III E.

3. The case including thermal corrections

For the case ofñee, ñei→0, andT̃0,aÞ0, the dephasing
factors of Eq.~9! asymptotically lead to

f1 ,f2 ,f ā,a→1; fT→t522T;

fT,ā ,fT,ā,a→2~T1T̃0,ā!;

c1 ,c2 ,c ā,a ,cT ,cT,ā ,cT,ā,a→0. ~22!

Therefore, in Eq.~8!, V i2
22, V i2,T

22 , V44
22 , V44,T

22 →0, and Eq.
~7! then reduces to

Re~v2,Vk
22!

'@~11tVk
22!2~V11

221V11,T
22 Vk

22!#

3@~11tVk
22!~12Vk

22!2~V21
221V21,T

22 Vk
22!

2~V31
221V31,T

22 Vk
22!Vk

22#2~V41
221V41,T

22 Vk
22!

3~V43
221V43,T

22 Vk
22!Vk

22 , ~23a!

Im~v2,Vk
22!'0, ~23b!

and we have the relations of

V21,T
22 'tV21

22 , V41
22'V43

22 , V41,T
22 'V43,T

22 . ~24!

In this case, dephasing effects disappear, and the dispe
relation yields purely real and purely imaginary solution
Concerning Eq.~24!, I give the definitions of

V1
225(

a

n0,a

G0,av2 , V1,T
225(

a

n0,a

G0,av2 fT,ā ; ~25a!

V2
225(

a

n0,a

G0,a
3 v2 , V2,T

225tV2
22 ; ~25b!

V3
225(

a

n0,av0,a
2

G0,av2 , V3,T
225(

a

n0,av0,a
2

G0,av2 fT,ā,a ;

~25c!

V4
225(

a

n0,av0,a

G0,av2 , V4,T
225(

a

n0,av0,a

G0,av2 fT,ā , ~25d!
1-5
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instead of Eq.~8!. Note that the definitions ofV1
22, V2

22,
andV4

22 have already appeared in Eq.~13a!. Using the defi-
nitions of Eq.~25!, the approximate dispersion Eq.~23! can
be written as

@~11tVk
22!2~V1

221V1,T
22Vk

22!#

3@~11tVk
22!~12V2

222Vk
22!

2~V3
221V3,T

22Vk
22!Vk

22#

2~V4
221V4,T

22Vk
22!2Vk

22'0. ~26!

In general, Eq.~26! contains ten solutions. At first glance, th
form of Eq.~26! seems to be different from that of Eqs.~15!
and ~21!. Indeed, there are some differences in dispers
property, for instance, the plasma oscillation mode contai
in the factor of@(11tVk

22)2(V1
221V1,T

22Vk
22)# involves

the thermal dispersion. In the special case without ther
corrections, however, Eq.~26! recovers the same form wit
Eq. ~21!, as shown below.

4. The collisionless case without thermal corrections

For the case ofñee, ñei→0, andT̃0,a→0, the dephasing
factors of Eq.~9! asymptotically lead to

f1 ,f2 ,f ā,a→1; fT ,fT,ā ,fT,ā,a→0;

c1 ,c2 ,c ā,a ,cT ,cT,ā ,cT,ā,a→0. ~27!

Therefore, in Eq.~8!, V i2
22, V44

22 , V i j ,T
22 →0 and V41

22

'V43
22 , and then Eq.~7! reduces to

v2~12V1
22!~12V2

22!

2k2@~12V1
22!~11V3

22!1V4
24#'0, ~28!

where V i
22 have been defined in Eq.~25!, and V4

24

5(V4
22)2. It is found that Eq.~28! maintains the form simi-

lar to Eqs.~15! and ~21!. This dispersion Eq.~28! exactly
coincides with that obtained by Califanoet al. @27,28#.

III. EIGENMODE PROPERTIES AND GROWTH RATES
OF THE RELATIVISTIC CURRENT FILAMENTATION

INSTABILITY IN A COLLISIONAL PLASMA

In the following, we find the solutions contained in th
approximate dispersion Eqs.~15!, ~21!, ~26!, and ~28!. The
complex eigenmodes are explicitly written down, and s
veyed for wide parameter ranges of counterstreaming rela
istic currents.

A. Eigenmodes including electron-electron collisional effects

At first, I seek the solutions of Eq.~15! in terms ofv. Let
us consider the symmetrical configuration of counterstre
ing currents such asn0,15n0,250.5 @33#, having v0,15
2v0,2. The choice of the parameters may be instructive
making a direct comparison between the present results
the previous ones@27#. Equation~15! can be then cast to
01640
e
d

al

-
v-

-

r
nd

S v22
1

G0
D Fv82S v22

1

G0
3D 2S v821

v0
2

G0
D k2G50, ~29!

wherev05uv0,au andG05(12v0
2)21/2, and the transforma-

tion Eq. ~14! reduces to

v825~112i ñee!v
2. ~30!

The first factor of~left-hand side! ~lhs! of Eq. ~29! yields a
simple electrostatic mode, corresponding to the relativis
plasma oscillation:v56v r andv i50, where

v r~G0!5G0
21/2. ~31!

Below, we refer to this eigenmode as oscillatory modeo
mode!. It turns out that momentum exchange between el
trons and electrons does not disturb the plasma oscillatio

The second factor of lhs of Eq.~29! contains four solu-
tions. The values ofv82 are connected withv2 through the
complex operator in Eq.~30!. Therefore, in contrast to colli-
sionless cases,v2 values are of complex, to give

v2~k2,ñee,G0 ,m!

5
1

2Fk21
1

G0
3

1sgn~m!AA~k2,ñee,G0!exp@ iq~k2,ñee,G0!#G , ~32!

where sgn(m5m6)561, and

A~k2,ñee,G0!5AB2~k2,ñee
2 ,G0!1C2~k2,ñee,G0!,

B~k2,ñee
2 ,G0!5k41

2~2G0
214ñee

2 21!

~114ñee
2 !G0

3
k21

1

G0
6 ,

C~k2,ñee,G0!52
8ñee~G0

221!

~114ñee
2 !G0

3
k2,

q~k2,ñee,G0!5
1

2
tan21FC~k2,ñee,G0!

B~k2,ñee
2 ,G0! G . ~33!

Note the relation ofA1B.0 andA2B>0.
Moreover, I rewrite Eq.~32! in the form of the polar co-

ordinate: v56uv0uexp(iu0), where v0 and u0 are purely
real numbers. For the signs~6! each, we have two solution
with m5m1 andm2 , which are referred to as positive mod
(p mode! and negative mode (n mode!, respectively. The
squared magnitude and the polar angle of the complex eig
modes are given by
1-6
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v0
2~k2,ñee,G0 ,m!5

1

2
AFk21

1

G0
3 1sgn~m!a~k2,ñee,G0!G2

1b2~k2,ñee,G0!, ~34a!

u0~k2,ñee,G0 ,m!5
1

2
tan21F 2sgn~m!b~k2,ñee,G0!

k21
1

G0
3 1sgn~m!a~k2,ñee,G0!G , ~34b!
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respectively, where

a~k2,ñee,G0!5AA~k2,ñee,G0!1B~k2,ñee
2 ,G0!

2
.0,

b~k2,ñee,G0!5AA~k2,ñee,G0!2B~k2,ñee
2 ,G0!

2
>0.

~35!

One should note that Eq.~34b! restricts its parameter rang
to 2p/4,u0<0, because the argument of right-hand s
~rhs! of Eq. ~34b! is negative definite, i.e., the ratio is2/1
for the p mode and1/2 for the n mode. In order to recon
struct the polar angles consistent with the argument, I ap
priately define v0p5uv0(m5m1)u and u0p5u0(m5m1)
for the p mode, andv0n5uv0(m5m2)u and u0n5u0(m
5m2)1p/2 for the n mode. Note the allowable paramet
ranges of2p/4,u0p<0 and p/4,u0n<p/2. For the p
mode with 2A2/2,sinu0p<0 and A2/2,cosu0p<1, the
complex eigenmodes of v5v0pexp(iu0p) and v5
2v0pexp(iu0p)5v0pexp@i(u0p1p)# reflect decaying and
growing waves, respectively. Thus, the phase of the deca
and growing waves propagates towardy and 2y direction,
respectively. On the other hand, for then mode withA2/2
,sinu0n<1 and 0<cosu0n,A2/2, the complex eigenmode
of v5v0nexp(iu0n) and v52v0nexp(iu0n)5v0nexp@i(u0n
2p)# reflect growing and decaying waves, respectively.
contrast to thep mode, the phase of the growing and deca
ing waves propagates towardy and 2y direction, respec-
tively.

In Fig. 1 for the typical current speed ofv050.9 (G0
52.29), I show the polar coordinate plots of the comp
eigenmodesv for given wave numbersk, varying electron-
electron collision parameterñee. The trajectories ofv can be
compared to those of the arrowhead of vectors. In the co
sionless limit of ñee→0, we readA'B and C→0 in Eq.
~33!, and b→0 in Eq. ~35!, so thatu0→0 in Eq. ~34b!.
Hence, the vectors of thep mode direct the real axis, reflec
01640
e

o-

ng

-

i-

ing the purely oscillatory wave mode (u0p50; u0p1p
5p), whereas the vectors of then mode direct the imagi-
nary axis, reflecting the purely growing (u0n5p/2) and
purely decaying (u0n2p52p/2) mode. The unstable mod
just represents the electromagnetic Weibel instability in
collisionless plasma, which is discussed in Sec. III D late

As shown in Fig. 1~a! for k5331023 for the small but
finite value ofñee the vectors of then mode depart clockwise
from the imaginary axis. Asñee increases, the real compo
nents of the vectors increase, while the imaginary com
nents decrease. In this aspect, such a growing wave mo
considered to be the dephasing Weibel mode with redu
growth rate. In the strong collisional regime, the polar ang
of the vectors of the growing and decaying mode appro
u0n5p/4 and u0n2p523p/4, respectively, and the vec
tors shrink, reducing both their real and imaginary comp
nents. The vectors of thep mode do not largely depart from
the real axis for the small value ofk.

As seen in Fig. 1~b!, for the moderate value ofk53
31021, the trajectories of then mode are similar to those fo
the smallerk value. As for the vectors of thep mode, I now
find the clockwise deviation from the real axis. This repr
sents the decaying (u0p,0) and growing (u0p1p,p) elec-
tromagnetic mode. In the moderate collisional regime,
magnitude of the deviation angles tends to be large, tho
the maximum value is found to be small, compared with t
for the n mode. In the strong collisional regime, the vecto
of the p mode are likely to return to the real axis, reducin
their magnitude. For comparison, the fixed vectors of tho
mode are also plotted in the Fig. 1~a,b!. In these cases, th
magnitude of the vectors is larger than that of thep and n
mode.

For thep andn mode, the angular frequency of the osc
lations can be defined byv r(m5m1)5v0pcosu0p.0 and
v r(m5m2)5v0ncosu0n>0, respectively; and the linea
growth rate can be defined byg(m5m1)52v0psinu0p>0
andg(m5m2)5v0nsinu0n.0, respectively. They are sum
marized as follows:
v r~k2,ñee,G0 ,m!5
1

2
A2v0

2~k2,ñee,G0!1Fk21
1

G0
3 1sgn~m!a~k2,ñee,G0!G , ~36a!

g~k2,ñee,G0 ,m!5
1

2
A2v0

2~k2,ñee,G0!2Fk21
1

G0
3 1sgn~m!a~k2,ñee,G0!G . ~36b!
1-7
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FIG. 1. Polar coordinate plots of complex eigenmodes contai
in dispersion Eq.~29!, in the parameter range of 1022<ñee<102

for ~a! k53.031023 and~b! k53.031021: v56v0pexp(iu0p) for
p mode~solid curves with filled circles! andv56v0nexp(iu0n) for
n mode~solid curves with filled squares!. Thep andn mode refer to
the definition of, in Eq. ~34a!, v0p5uv0(m5m1)u and v0n

5uv0(m5m2)u, respectively, and in Eq.~34b!, u0p5u0(m5m1)
and u0n5u0(m5m2)1p/2, respectively. For comparison, I als
plot the fixed points ofv56G0

21/2 for o mode~open circles!. The
horizontal and vertical line crossing at the center correspond to
real and imaginary axis, respectively. The plots ofv can be com-
pared to, e.g., as indicated by arrows labeled asv, the trajectories of
arrowhead of the vectors, whose magnitude is scaled logarith
cally by the left axis. Here, I have chosen the parameter ofv0

50.9, setting ñei50 and T̃0,a50. Note that for ~a! k53.0
31023, the vectors of thep mode do not largely deviate from th
real axis. For an explanation, see the text.
01640
Here, note the relation ofv r(m1).g(m1) and v r(m2)
,g(m2).

In Fig. 2 for v050.9, I show the growth rateg of Eq.
~36b! as a function of the wave numberk for given collision
parametersñee50.1, 1, and 10. For then mode, it is found
that the collisional effects lower the growth rate for allk,
maintaining the dependence ofg}k for small value ofk, as
well as, the saturation property for large value ofk. Such
asymptotic properties of the growth rate can be also see
the purely growing Weibel mode in a collisionless plasm
@27,28#. In addition, the collisional effects create thep mode
due to the dephasing mechanism mentioned above.
growth rate has the dependence ofg}k2 andg}k21 in the
small- and large-k region, respectively, taking a peak aroun
the moderate value ofk. Such a peak tends to be promine
for ñee;O(1), andthen decreases asñee further increases,
as consistent with Fig. 1~b!. As a result, the growth rate
cannot exceed that of then mode corresponding to th
dephasing Weibel mode with reduced growth rate. Within
present framework, it seems that both modes do not d
nitely cut off the growth of short wavelength perturbation

In Fig. 3, forv050.9 andñee51, I show the growth rate
g as a function of the angular frequencyv r of Eq. ~36a!,
varying the wave numberk as a parameter. The growth ra
of the n mode turns out to be larger than that of thep mode
for all k, which is in contrast with the case including on
electron-ion collisional effects, as shown in Fig. 8 lat
Moreover, I found that the angular frequencies of thep andn
mode are separated atv r5G0

23/2.0.29, and the oscillation
frequency of thep mode is always higher than that of then
mode. The separation frequency, where]v r /]k→10, is
lower than the frequency of Eq.~31! for theo mode, i.e., the
plasma cutoff frequency. The relation of]v r /]k.0 for both
the p and n mode ensures that the direction of the gro
velocities coincides with that of the phase velocities of c
rier wave. For large value ofk, the oscillation frequency of

d

e

i-

FIG. 2. The linear growth rateg of Eq. ~36b! including the
effects of electron-electron collision, as a function of the wave nu
ber k, for ñee50.1 ~solid curves!, 1 ~dot-dashed curves!, and 10
~dotted curves!. The p andn mode refer to the unstable modes f
m5m1 andm2 in Eq. ~36b!, respectively. Here, I have chosen th

parameter ofv050.9, settingñei50 andT̃0,a50.
1-8
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thep mode goes far beyond the relativistic plasma frequen
while the growth rate decreases. These properties again
pear in the case including electron-ion collisional effects~see
also Fig. 8!.

In Fig. 4 for v050.9, I show the growth rateg as a func-
tion of the collision parameterñee for given values ofk
50.01 and 1. It is found that for moderate value ofñee, the
growth rate of thep mode takes the peak value, which ten
to be well pronounced especially fork;O(1). Forexample,
for k51 the growth rate takes the peak ofg.5.831022 at
ñee.0.63. In the weak collisional regime, it has dependen
of g}ñee, but on the other hand that of then mode is almost
constant, to give, e.g.,g.0.51 fork51. In the strong colli-
sional regime, the growth rates of both thep and n mode
decrease, to exhibit the asymptotic behaviors ofg}ñee

21 and
g}ñee

20.5, respectively.
In Fig. 5 for ñee51, I show the growth rateg as a func-

tion of k for given values ofv050.5, 0.9, and 0.99, corre
sponding toG051.15 ~79.0 keV!, 2.29 ~611 keV!, and 7.09

FIG. 3. The linear growth rateg of Eq. ~36b! vs the angular
frequencyv r of Eq. ~36a! for the p mode~solid curve! and then
mode ~dotted curve!, varying the wave numberk as a parameter
Here, I have chosen the parameters ofv050.9 andñee51, setting

ñei50 andT̃0,a50. For comparison, the angular frequency of theo
mode given by Eq.~31! is also indicated by a bold arrow.

FIG. 4. The linear growth rateg for thep andn mode given by
Eq. ~36b! as a function ofñee for k50.01 ~solid curves! and 1
~dotted curves!. Here, I have chosen the parameter ofv050.9, set-

ting ñei50 andT̃0,a50.
01640
y,
p-

e

~3.11 MeV!, respectively. For small value ofk, both thep
and n mode seem to increase their growth rates asG0
increases. For large value ofk, however, such properties ap
pear merely in weak to mild relativistic regime. Namely,
strong relativistic regime, the growth for largek tends to be
suppressed, for example, as for then mode, the saturation
level of the growth rate decreases asG0 increases. The pea
of the growth rate of thep mode is likely to shift to the
smaller-k region, reducing its value. Although, the energ
dependence of then mode appears again in the case inclu
ing electron-ion collisional effects, thep mode significantly
changes its property, as shown below.

B. Eigenmodes including electron-ion collisional effects

I seek the solutions of Eq.~21! in terms ofv. In the case
of the symmetrically counterstreaming currents withn0,1
5n0,250.5 andv0,152v0,2, Eq. ~21! can be cast to

S v922
1

G0
D Fv92S v922

1

G0
3D 2S v921

v0
2

G0
D k92G50, ~37!

where v05uv0,au and G05(12v0
2)21/2. Note that Eq.~37!

has the same form as Eq.~29! for the previous case. How
ever, now allv2 and k2 values are being dephased by t
transformation Eq.~19!, to provide the eigenmodes signifi
cantly different from those derived from Eq.~29!. The first
factor of lhs of Eq.~37! contains a modified electrostati
mode of the relativistic plasma oscillation. The eigenmo
may be written in the form ofv56(v r2 iv i), and the
growth rate can be then defined byg5v i , that is,

v r~ ñei
2 ,G0!5

1

AG0z2
3/4~ ñei

2 !
, g~ñei ,G0!5

ñei

AG0z2
3/4~ ñei

2 !
.

~38!

FIG. 5. The linear growth rateg for thep andn mode given by
Eq. ~36b! as a function of the wave numberk for v050.5 ~solid
curve!, 0.9 ~dot-dashed curves!, and 0.99~dotted curve!. Here, I

have chosen the parameter ofñee51, settingñei50 andT̃0,a50.
Note that the dot-dashed curves forv050.9 are the same as thos
shown in Fig. 2.
1-9
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It is found that the dissipative effects owing to the electro
ion collisions create the growing and decaying oscillato
mode, which seemingly carries its phase towar
2y andy direction, respectively. As far as ignoring therm
and asymmetrical effects of counterstreaming currents
concerned, this mode is independent of wave number, so
the group velocity is null. Note that in the collisionless lim
of ñei→0, Eq. ~38! reduces to Eq.~31! which denotes the
relativistic plasma oscillation. In this sense, we refer to
-
s

-

s

01640
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y

is
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e

eigenmode identified by Eq.~38!, for convenience, aso
mode.

The second factor of lhs of Eq.~37! contains four com-
plex solutions. Along the manner explained in Sec. III A
express the solutions in the polar coordinate form ofv5
6uv0uexp(iu0), wherev0 and u0 are purely real numbers
For the signs~6! each, we get two solutions. The squar
magnitude and the polar angle of the complex solutions
given by
v0
2~k2,ñei ,G0 ,m!5

1

2z2
AFz2k21

1

G0
3 1sgn~m!~a1 ñeib!G2

1F ñei

G0
3

1sgn~m!~ ñeia2b!G 2

, ~39a!

u0~k2,ñei ,G0 ,m!5
1

2
tan21F 2

ñei

G0
3

2sgn~m!~ ñeia2b!

z2k21
1

G0
3 1sgn~m!~a1 ñeib!

G , ~39b!
-

ve

g

l in-
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cts
-
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f
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ed.
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s-
respectively, where

a~k2,ñei ,G0!5AA~k2,ñei ,G0!1B~k2,ñei
2 ,G0!

2
.0,

b~k2,ñei ,G0!5AA~k2,ñei ,G0!2B~k2,ñei
2 ,G0!

2
>0,

~40!

and

A~k2,ñei ,G0!5AB2~k2,ñei
2 ,G0!1C2~k2,ñei ,G0!,

B~k2,ñei
2 ,G0!5~12 ñei

2 !k41
2~2G0

221!

G0
3 k21

1

G0
6 ,

C~k2,ñei ,G0!52ñeik
2S k21

2G0
221

G0
3 D . ~41!

Note the relation ofA1B.0 andA2B>0. Below, I refer
to the solutions withm5m1 and m2 , as p mode andn
mode, respectively. As is the case with Eq.~34b!, Eq. ~39b!
holds a parameter range of2p/4,u0<0, because the argu
ment of rhs of Eq.~39b! is negative definite, i.e., the ratio i
2/1 for thep mode and1/2 for then mode. Thus, recalling
the definitions of v0p5uv0(m5m1)u and u0p5u0(m
5m1) for the p mode, andv0n5uv0(m5m2)u and u0n
5u0(m5m2)1p/2 for the n mode, the complex eigen
modes v56v0pexp(iu0p) denote the decaying~1! and
growing ~2! wave that carry their phases towardy and2y
direction, respectively; andv56v0nexp(iu0n) denote the
growing ~1! and decaying~2! wave that carry their phase
towardy and2y direction, respectively.
In Fig. 6 for the current speed ofv050.9, I show the
polar coordinate plots of the complex eigenmodesv for
given wave numbersk, varying electron-ion collision param
eter ñei . We compare the trajectories ofv to those of the
arrowhead of vectors. In the collisionless limit ofñei→0, we
readA'B andC→0 in Eq. ~41!, andb→0 in Eq. ~40!, so
that u0→0 in Eq. ~39b!. Hence, the vectors of thep mode
direct the real axis, reflecting the purely oscillatory wa
mode (u0p50;u0p1p5p), while the vectors of then mode
direct the imaginary axis, reflecting the purely growin
(u0n5p/2) and purely decaying (u0n2p52p/2) mode.
The unstable mode represents the electromagnetic Weibe
stability in a collisionless plasma.

As shown in Fig. 6~a! for k5331023 for small but finite
value ofñei the vectors of thep mode depart clockwise from
the real axis. Asñei increases, the real components of t
vectors decrease, while the imaginary components incre
The magnitude of the deviation angles is larger than tha
the case including only electron-electron collisional effe
@compare Fig. 1~a!#. In the strong collisional regime, the vec
tors shrink, reducing both their real and imaginary comp
nents. This is the decaying and growing electromagn
mode, which possesses the allowed range of polar angl
2p/4,u0p<0 and 3p/4,u0p1p<p, respectively. For
the parameter range ofñei being considered, the vectors o
the n mode do not largely depart from the imaginary ax
that is, the purely growing Weibel mode is not so dephas
The most remarkable property can be seen in theo mode.
For ñeiÞ0, the vectors leave the real axis, and asñei in-
creases the magnitude of the deviation angles increases
consistent with Eq.~38!, at ñei51 the vectors of the growing
and decaying oscillatory mode have the angles of 3p/4 and
2p/4, respectively; and in the strong collisional limit, a
ymptotically approachp/2 and2p/2, respectively.
1-10
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In Fig. 6~b!, for the moderate value ofk5331021, I now
clearly find, for ñeiÞ0, the clockwise deviation of vecto
pairs of p, n, and o modes. This essentially means that
modes are in phase lag, because of the frictional natur
collisions. The vectors of thep and n mode exhibit the be-
havior similar to that displayed in Fig. 1~b!. In contrast with
the case for smallk, the polar angles of the vectors of thep
mode cannot reach to 3p/4 and 2p/4, and in the strong
collisional regime the vectors are likely to return to the re
axis, reducing their magnitude. On the other hand, the v
tors of then mode largely deviate from the imaginary ax
until the angles reach top/4 and23p/4. In the weak colli-
sional regime, the vectors increase the real components
decrease the imaginary components, whereas in the st
he
I

lli
e
o

en

nl
on

o

n

01640
l
of

l
c-

nd
ng

collisional regime, there is decrease both in the real a
imaginary components. As a result, the electron-ion co
sional effects lower the growth rate of then mode, namely,
the dephasing Weibel mode. Note that the trajectories of
vectors of theo mode are the same as those displayed in F
6~a!. For the moderate value ofk, the magnitude of the vec
tors of then mode is found to be comparable to that of theo
mode.

For thep andn mode, the angular frequency of the osc
lations can be defined byv r(m5m1)5v0pcosu0p.0 and
v r(m5m2)5v0ncosu0n>0, respectively; and the linea
growth rate can be defined byg(m5m1)52v0psinu0p>0
andg(m5m2)5v0nsinu0n.0, respectively. They are sum
marized as follows:
v r~k2,ñei ,G0 ,m!5
1

2
A2v0

2~k2,ñei ,G0!1F k21

1

G0
31sgn~m!@a~k2,ñei ,G0!1 ñeib~k2,ñei ,G0!#

z2~ ñei
2 !

G , ~42a!

g~k2,ñei ,G0 ,m!5
1

2
A2v0

2~k2,ñei ,G0!2F k21

1

G0
31sgn~m!@a~k2,ñei ,G0!1 ñeib~k2,ñei ,G0!#

z2~ ñei
2 !

G . ~42b!
n

are

ing

l

e

are

e
lud-
Here, note the relation ofv r(m1).g(m1) and v r(m2)
,g(m2).

In Fig. 7 for v050.9, I show the growth rateg of Eqs.
~38! and~42b! as a function of the wave numberk for given
collision parametersñei50.1, 1, and 10. For then mode, the
collisional effects lower the growth rate, especially in t
large-k region where the growth rate tends to saturate.
contrast to the case including only electron-electron co
sions, the growth rate for smallk, which has the dependenc
of g}k, is found to be not so depressed due to the electr
ion collisional effects~compare Fig. 2!. The p ando mode,
which appear owing to the collisional effects, are promin
for the parameter ofñei;O(1), andsufficiently surpass the
n mode in growing long-wavelength~small-k) perturbations.
This feature is in major contrast to the case including o
electron-electron collisional effects. For the larger collisi
parameter, it is noteworthy that even in the large-k region,
the growth rate of theo mode exceeds that of then mode,
i.e., the suppressed Weibel mode. This is one of the m
important results in the present paper. In the large-k region,
the growth rate of thep mode decreases, showing the depe
dence ofg}k21, and is far below that of then ando mode.
In the small-k region, the growth rate of thep mode is almost
independent ofk, and is always smaller than that of theo
mode. That is,g( ñei ,G0 ,m5m1)'@(Az221)/(2z2G0

3)#1/2

, ñei /(AG0z2
3/4) for ñei.0 andG0.1.

In Fig. 8, for v050.9 andñei51, I showg of Eq. ~42b!
as a function of the angular frequencyv r of Eq. ~42a!, vary-
ing k as a parameter. For comparison, in thev r2g plane, I
also plot a fixed point given by Eq.~38! for theo mode. It is
n
-

n-

t

y

st

-

found that for large value ofk, the growth rate of then mode
is larger than that of theo mode, which is always larger tha
that of the p mode. Note that, for thep and n mode,
]v r /]k.0, and the angular frequencies of both modes
clearly separated at the frequency ofv r.0.2, where
]v r /]k→10. As a result, the oscillation frequency of thep
mode is always higher than that of then mode. These fea-
tures could be also seen in Fig. 3 for the case includ
electron-electron collisional effects.

In Fig. 9, for v050.9, I show the growth rateg of Eq.
~38!, and ~42b! as a function of the collision parameterñei
for given values ofk50.01 and 1. In the weak collisiona
regime, the growth rates of theo andp mode are both pro-
portional to ñei , while the growth rate of then mode is
almost constant. For smallerk, the growth rates of theo and
p mode can more readily exceed the growth rate of thn
mode, and for the moderate value ofñei , they take the peak
values. The growth rate of theo mode can, even for largek,
exceed that of then mode, and takes the peak ofg.0.41 at
ñei.1.4. The growth rate decreases asñei further increases,
showing the dependence ofg}ñei

20.5. It is also noted that in
the strong collisional regime, the growth rates of thep andn
mode have the dependencies ofg}ñei

21 and g}ñei
20.5, re-

spectively. As would be expected, anyhow, all modes
suppressed in the strong collisional regime.

In Fig. 10 for ñei51, I show the growth rateg of Eqs.
~38! and ~42b! as a function ofk for given values ofv0
50.5 (G051.15), 0.9 (G052.29), and 0.99 (G057.09). It
should be remarked that for the lower current speed, tho
mode becomes most dominant. In contrast to the case inc
1-11
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M. HONDA PHYSICAL REVIEW E 69, 016401 ~2004!
ing only electron-electron collisional effects, theo and p
mode monotonically reduce their growth rates asG0 in-
creases, and soon theo mode is overcome by then mode
from large-k region. The energy dependence of then mode is

FIG. 6. Polar coordinate plots of complex eigenmodes contai
in dispersion Eq.~37!, in the parameter range of 1022<ñei<102 for
~a! k53.031023 and ~b! k53.031021: v56v0pexp(iu0p) for p
mode~solid curves with filled circles! andv56v0nexp(iu0n) for n
mode ~solid curves with filled squares!, and Eq.~38! for o mode
independent ofk ~hair solid curves with open circles!. Thep andn
mode refer to Eq.~39! for m5m1 and m2 , respectively, and the
definitions ofv0p , v0n , u0p , andu0n are the same as those in Fi
1 caption. The horizontal and vertical line correspond to the
and imaginary axis, respectively. The plots ofv can be compared to
the trajectories of arrowhead of the vectors, whose magnitud
scaled by the left axis. Here, I have chosen the parameter ov0

50.9, setting ñee50 and T̃0,a50. Note that for ~a! k53.0
31023, the vectors of then mode do not largely deviate from th
imaginary axis for the parameter range being considered~see text!.
01640
similar to that shown in Fig. 5, namely, in weak to mi
relativistic regime, the saturation level of the growth ra
increases asG0 increases, while in strong relativistic regim
it tends to decrease. In small-k region, the growth rate seem
to increase asG0 increases, since its curve, roughly propo
tional to k, shifts to the smaller-k region. Such an apparen
redshift can be also seen in the large-k region for thep mode.

C. Eigenmodes including thermal corrections

In Eq. ~26!, I seek the solutions in terms ofv. Regarding
the symmetrically counterstreaming currents ofn0,15n0,2

50.5, v0,152v0,2, andT̃0,15T̃0,2, Eq. ~26! can be cast to

d

l

is

FIG. 7. The linear growth rateg of Eq. ~42b! including the
effects of electron-ion collision, as a function of the wave numbek,
for ñei50.1 ~solid curves!, 1 ~dot-dashed curves!, and 10~dotted
curves!. The p and n mode refer to the unstable modes form
5m1 and m2 in Eq. ~42b!, respectively. Hair lines for eachñei

show the linear growth rateg of Eq. ~38! for the o mode. Here, I

have chosen the parameters ofv050.9, settingñee50 and T̃0,a

50.

FIG. 8. The linear growth rateg of Eq. ~42b! vs the angular
frequencyv r of Eq. ~42a! for the p mode~solid curve! and then
mode~dotted curve!, varying the wave numberk as a parameter. An
open circle indicates the point given by Eq.~38! for the o mode.
Here, I have chosen the parameters ofv050.9 andñei51, setting

ñee50 andT̃0,a50.
1-12
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Fv2~v224T̃0k2!2
1

G0
~v223T̃0k2!GFv2~v224T̃0k2!

3S v22k22
1

G0
3D 2

v0
2

G0
~v223T̃0k2!k2G50, ~43!

wherev05uv0,au, G05(12v0
2)21/2, and T̃05T̃0,a . The first

factor of lhs of Eq.~43! contains four purely real solutions
but two of them are found to be inconsistent with the
sumption ofT̃0Vk

22!1 ~not shown!. The other two solutions

can be expressed asv56v r , and for 4G0T̃0k2!1, we ob-
tain

v r~k2,T0 ,G0!'
1

AG0
S 11

3

2
T0k2D , ~44!

FIG. 9. The linear growth rateg for thep andn mode given by
Eq. ~42b! as a function ofñei for k50.01 ~solid curves! and 1
~dotted curves!. Hair solid curve shows the linear growth rateg of
Eq. ~38! for the o mode, which is independent ofk. Here, I have

chosen the parameter ofv050.9, settingñee50 andT̃0,a50.

FIG. 10. The linear growth rateg for thep andn mode given by
Eq. ~42b! as a function of the wave numberk for v050.5 ~solid
curve!, 0.9 ~dot-dashed curves!, and 0.99~dotted curve!. Hair lines
for eachv0 showg of Eq. ~38! for theo mode. Here, I have chose

the parameter ofñei51, settingñee50 andT̃0,a50. Note that the
dot-dashed curves/line forv050.9 are the same as those shown
Fig. 7.
01640
-

where T05T0,a . Note that Eq.~44! is of the order ofv r

;G0
21/2, and therefore, the assumptionT̃0Vk

22!1 requires
3T0k2!1, which is consistent with the aforementioned re
tion of ;G0T̃0k2!1. Equation~44! just corresponds to the
relativistically extended dispersion of the Bohm-Gross wa
with nonzero group velocity~e.g., see Ref.@48# for the non-
relativistic limit!. In contrast to Eqs.~31! and ~38!, we find
the thermal dispersion terms characterized by;T0k2 in Eq.
~44!. Physically, this reflects the Debye screening by el
trons @51#. In the limit of T0k2→0, Eq. ~44! reduces to Eq.
~31! for oscillatory mode.

Moreover, the second factor of lhs of Eq.~43! contains six
solutions. Numerical calculation indicates that these con
of four purely real solutions and a purely imaginary soluti
concomitant with its complex conjugate:v56 iv i . For the
purely growing mode that is of interest here, we can defi
the linear growth rate asg5v i . In Fig. 11 ~solid curve!, I
showg as a function of the wave numberk for v050.9 and
T̃050.1, as an example. It is found that the thermal effe
simply lower the growth rate of the purely growing Weib
instability, at least, in the range ofk;O(1). Note that in
contrast to collisional cases, the thermal effects do not t
part in dephasing the purely oscillatory and purely growi
mode, but merely give rise to the mode-dispersion which
reduce the growth rate.

D. Eigenmodes of collisionless case without thermal
corrections

In the collisionless limits without thermal corrections, th
dephasing operators in Eqs.~19! and~30! asymptotically ap-
proach unity, vanishing their imaginary parts. Then, E
~29!, ~37!, and~43! degenerate into a unique equation,

S v22
1

G0
D Fv2S v22

1

G0
3D 2S v21

v0
2

G0
D k2G50, ~45!

where v05uv0,au and G05(12v0
2)21/2. As expected, Eq.

FIG. 11. The linear growth rateg as a function of the wave

numberk for T̃050.1 ~solid curve! and T̃050 @Eq. ~48b!: dotted
curve# @27#. Here, I have chosen the parameters ofv050.9, ñee

50, andñei50.
1-13
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~45! has the same form with Eqs.~29! and ~37!. The first
factor of lhs of Eq.~45! yields the plasma oscillation mod
given by Eq.~31!.

The second factor of lhs of Eq.~45! contains four solu-
tions. In contrast to collisional cases, the values ofv2 are
obtained as purely real numbers. Concerning the polar f
v56uv0uexp(iu0), Eqs.~34! and ~39! reduce to

v0
2~k2,G0 ,m!5

1

2Uk21
1

G0
3 1sgn~m!AA~k2,G0!U,

~46a!

u050, ~46b!

where,

A~k2,G0!5k41
2~2G0

221!

G0
3 k21

1

G0
6 . ~47!

Recalling the definitions ofv0p5uv0(m5m1)u and u0p
5u0 for the p mode, andv0n5uv0(m5m2)u and u0n5u0
1p/2 for the n mode, Eq.~46b! leads tou0p50 and u0n
5p/2. It is, therefore, found that for thep mode, the real
solutions ofv56v0pexp(iu0p)56v0p describe the purely
oscillatory wave mode, while for then mode, the imaginary
solutions ofv56v0nexp(iu0n)56iv0n describe the purely
growing ~1! and purely decaying~2! mode. The phase
properties are shown in Figs. 1 and 6.

Now, the angular frequency of the oscillation and the l
ear growth rate can be defined byv r5v0p.0 andg5v0n

.0, respectively. Taking the inequalityAA.k21(1/G0
3)

into consideration, the angular frequency and the growth
can be expressed as

v r~k2,G0!5
1

A2
FAA~k2,G0!1S k21

1

G0
3D G1/2

, ~48a!

g~k2,G0!5
1

A2
FAA~k2,G0!2S k21

1

G0
3D G1/2

, ~48b!

respectively. Note the relation ofv r.g. In Fig. 11 ~dotted
curve!, I show the linear growth rateg of Eq. ~48b! for v0
50.9, as a function of the wave numberk. This growth rate
is just of the relativistically extended electromagnetic Wei
instability in a collisionless plasma@29#. It is found that for
G0

5k2!1 and G0
3k2@1, Eq. ~48b! simply exhibits the

asymptotic property ofg'AG0
221k andg'A(G0

221)/G0
3,

respectively. It might be instructive to compare Fig. 11 w
Figs. 2 and 7 for the case including collisional effects. It
confirmed that this mode is in a special case of the mo
presented in Sec. III A–III C.

E. Eigenmodes including asymmetric effects
of counterstreaming currents

For another comparison, we are concerned with an as
metrical configuration of counterstreaming currents. First
Eq. ~28! for the collisionless case, I change the parameter
01640
m

-

te

l

s

-
n
to

an asymmetrical, though still current-neutral initial bea
configuration withn0,150.1 (v0,150.9) andn0,250.9 (v0,2
520.1). Note that the corresponding beam-to-plasma d
sity ration,nb /np;10, is of relevance to electron transpo
in the context of ignitor physics. Here the electron bea
density could be estimated asnb;nc'1021 cm23 and the
plasma density asnp'10nc @37#. It is around the low-density
foot of steeply rising density profile of laser-ablative plasm
@47#, where the filamentation dynamics may be most prom
nent. As shown in Fig. 12~crosses!, it is found that for such
parameters the growth rate reduces by a factor 10 in
small-k region and by factorA10 in the saturation region
The strong reduction is, more or less, favorable for energ
electrons to propagate through the ablative corona surrou
ing a highly compressed ignitor plasma.

In the denser region, electron-ion collisions might play
important role in attenuatingslow return currents, owing to
the relation of (nbi /vpb)(nei /vpe)

21.(nb /ne)
5/2Gb

23/2!1,
where nbi and vpb denote the beam electron-ion collisio
frequency and beam electron plasma frequency, respecti
At this juncture, in order to take account of the collision
effects more plausibly, one may replace the dispersion
~21! with

v2~12V19
22!~12V29

22!

2k2@~12V19
22!~11V39

22!1V49
24#'0, ~49!

where, instead of Eqs.~19! and ~20!, use va9
25(1

1 i ñei,a)v2 and

V19
225(

a

n0,a

G0,ava9
2 , V29

225(
a

n0,a

G0,a
3 va9

2 ,

V39
225(

a

n0,av0,a
2

G0,ava9
2 , V49

225(
a

n0,av0,a

G0,ava9
2 , ~50!

FIG. 12. The linear growth rateg as a function of the wave
number k for asymmetrically counterstreaming currents ofv0,1

50.9 andv0,2520.1 with ñei,250 ~crosses! and ñei,251. For the
latter case (ñei,251), solid, dashed, and dot-dashed curves showg
of the n, o, andp modes, respectively. Here, I have setñei,150 for
both the cases. For comparison, I also plotg for a symmetrical case
of v050.9 without collisions~hair dotted curve!, which is the same
as the dotted curve shown in Fig. 11.
1-14
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EIGENMODES AND GROWTH RATES OF RELATIVISTIC . . . PHYSICAL REVIEW E 69, 016401 ~2004!
respectively. For simplicity, we set the current parameter
the same as the previous ones:n0,150.1 (v0,150.9) and
n0,250.9 (v0,2520.1), but now providing the slow retur
current with G0,2.1 to be resistive such asñei,2Þ0
(@ ñei,1). Numerical calculations indicate that Eq.~49! con-
tains six complex solutions, consisting of three pairs of
positive and negative solutions. For the three unstable mo
each, one can define the growth rates asg5uv i u.

In Fig. 12, I showg as a function ofk, for the collision
parameters ofñei,150 and ñei,251, as an example. It is
found that as a whole the wave number dependence itse
similar to that for the symmetrically counterstreaming ca
~compare Figs. 7 and 10!. The purely growing mode (ñei,2
50: crosses! is disturbed due to the collisional effects on t
slow return current to yield then mode, namely, the dephas
ing Weibel mode. However, the dephasing effects resul
only a slight increase of the growth rate. As shown in Fig.
~solid curve! for ñei,251 the increasing rate is about 14%
most aroundk.0.5. I mention that for the larger collisio
parameter, the growth rate of then mode is depressed belo
that for the collisionless (ñei,250) case. In addition, the
dephasing effects create the unstable modes analogous
o andp mode that were introduced in Sec. III B. The grow
rate of the correspondingo mode now quite weakly depend
on the wave number. Both the modes are found to surp
the n mode in growing long-wavelength perturbations,
shown in the figure. In particular, for the parameter region
ñei,2;O(1), thegrowth rate of theo mode exceeds, even i
the short-wavelength region, that of then mode, that is,
along the mechanism elucidated in Sec. III B, the electr
ion collision affects the slow return current, even if the fo
ward beam current is in the collisionless regime. This con
quence is consistent with the previous results obtained
carrying out the fully relativistic and electromagnetic partic
simulation for asymmetrically counterstreaming electron c
rents in plasma@37#.

IV. CONCLUDING REMARKS

In conclusion, I have systematically investigated the
tails of collisional and thermal effects on the relativistic cu
rent filamentation instability, generalizing dispersion relati
of the beam-Maxwell system. For specific cases, the appr
mate dispersions have been derived and applied to the in
bility analysis of typical counterstreaming relativistic ele
tron currents, relevant to ignitor physics. For t
symmetrically counterstreaming cases, the particular res
are summarized as follows:

~i! Effects of electron-electron collision suppress the re
tivistic Weibel instability for all wavelengths. The effec
newly create a growing wave mode, but its growth rate
always lower than that of the suppressed Weibel instabil
01640
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~ii ! Effects of electron-ion collision suppress the relativ
tic Weibel instability, especially for short-wavelength pertu
bations. The effects create growing oscillatory and wa
mode. For long-wavelength perturbations, the growth ra
of both modes tend to exceed the growth rate of the s
pressed Weibel instability. For the stronger collisional co
pling, and lower current speed as well, the growth rate of
oscillatory mode can, for all wavelengths, exceed that of
suppressed Weibel instability.

~iii ! Effects of thermal spread simply suppress the rela
istic Weibel instability, at least, in a moderate waveleng
range.

For the asymmetrically counterstreaming case, the rela
istic Weibel instability for the symmetrical case is strong
suppressed, though the electron-ion collision still affects
slow return current, creating the unstable modes, as m
tioned above in result~ii !.

The important point is that, in general, the growing osc
latory mode is created by dephasing a purely oscillat
mode, and the growing wave mode is created by depha
either a purely oscillatory wave mode or a purely growi
mode. While the collisional effects invoke phase lag, refle
ing the inverse transformation of Eqs.~14! and ~19! for
electron-electron and electron-ion collision, respectively,
thermal effects do not dephase the purely oscillatory, os
latory wave, and growing mode, but involve mode disp
sion. Hopefully, intense laser-plasma interaction experim
will be able to reproduce these fundamental consequen
though they were derived by leaving out longitudinal mod
complexities of mode-coupling, and so forth.
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APPENDIX: DERIVATION OF THE GENERALIZED
DISPERSION RELATION INCLUDING COLLISIONAL

EFFECTS AND THERMAL CORRECTIONS

In this appendix, I briefly explain the derivation of Eq
~7!. By linearizing the continuity Eq.~2!, the density pertur-
bation of electron componenta is described asn1,a

5n0,aVk
21(p1,a,y /G0,a), whereVk

215k/v, and p1,a,i stand
for the first order quantities ofi-directional momentum of the
component a. Making use of the relations ofp1,a,x
5E1,x /( iv2nei), which are obtained by linearizingx com-
ponent of the vector Eq.~3!, the first order momentap1,a,y
can be expressed as functions of the first order electric fi
E1,i . Substituting these expressions into the linearized c
tinuity equation mentioned above, I obtain the first ord
equations for density perturbation in the form of
n1,a

n0,a
5

Vk
21

ivG0,a

v0,aVk
21@~12T̃0,āVk

221 in!1 i ñeey āa#E1,x1~12T̃0,āVk
221 in1!E1,y

~12T̃0,aVk
221 in!~12T̃0,āVk

221 in!1 ñee
2

~A1!
1-15
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for vÞ0. Here, the abbreviations of Eq.~10! have been used. Substituting the expressions ofp1,a,i , Eq. ~A1!, and B1,z5
2Vk

21E1,x derived from Eq.~4!, into the linearized Eq.~5!, yields the first order equations ofE1,i . For the manipulations, the

second order terms for thermal correction of the form of;(T̃0,aVk
22)2 in the products of, e.g., (12T̃0,1Vk

22)(12T̃0,2Vk
22) are

neglected, such that (12T̃0,1Vk
22)(12T̃0,2Vk

22)'12(T̃0,11T̃0,2)Vk
22512TVk

22. Finally, we arrive at the equation of th
form of D j

i(k,v)E1,i'0 (;E1,i), where the determinant of the dielectric tensor is

uD~k,v!u5$~11tVk
22!~12Vk

22!2~V21
221 iV22

22!2@~V21,T
22 1 iV22,T

22 !1~V31
221 iV32

22!#Vk
22

2~V31,T
22 1 iV32,T

22 !Vk
24%

~11tVk
22!2~V11

221 iV12
22!2~V11,T

22 1 iV12,T
22 !Vk

22

@~V43
221 iV44

22!1~V43,T
22 1 iV44,T

22 !Vk
22#Vk

21

2@~V41
221 iV42

22!1~V41,T
22 1 iV42,T

22 !Vk
22#Vk

21 . ~A2!

Here, the definitions of Eq.~8! have been used. ForkÞ0, the dispersion relation can be defined byuD(k,v)u50, to give
Eq. ~7!.

As it is well known, if the imaginary part of the complex eigenvaluesv is much smaller than the real part, one can calcul
them by the Taylor expansion method@51#. However, this is not the case being considered, as seen in Figs. 1, 3, 6, and 8
is why, I have attempted to directly solve the complex Eq.~7! to extract the eigenvalues.
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